Global Existence and Decay of Solutions for a Quasi-linear Dissipative Plate Equation
نویسندگان
چکیده
In this paper we focus on the initial value problem of a quasi-linear dissipative plate equation with arbitrary spatial dimensions (n ≥ 1). This equation verifies the decay property of the regularity-loss type. To overcome the difficulty caused by the regularity-loss property, we employ a special time-weighted (with negative exponent) L2 energy method combined with the optimal L2 decay estimates of lower-order derivatives of solutions. We obtain the global existence and optimal decay estimates of solutions under smallness and enough regularity assumptions on the initial data. Moreover, we show that the solution can be approximated by a simple-looking function, which is the fundamental solution of the corresponding fourth-order linear parabolic equation.
منابع مشابه
Decay estimates of solutions to the IBq equation
In this paper we focus on the Cauchy problem for the generalized IBq equation with damped term in $n$-dimensional space. We establish the global existence and decay estimates of solution with $L^q(1leq qleq 2)$ initial value, provided that the initial value is suitably small. Moreover, we also show that the solution is asymptotic to the solution $u_L$ to the corresponding linear equa...
متن کامل1 On the critical dissipative quasi - geostrophic equation
The 2D quasi-geostrophic (QG) equation is a two dimensional model of the 3D incompressible Euler equations. When dissipation is included in the model then solutions always exist if the dissipation’s wave number dependence is super-linear. Below this critical power the dissipation appears to be insufficient. For instance, it is not known if the critical dissipative QG equation has global smooth ...
متن کاملOn the critical dissipative quasi-geostrophic equation
The 2D quasi-geostrophic (QG) equation is a two dimensional model of the 3D incompressible Euler equations. When dissipation is included in the model then solutions always exist if the dissipation’s wave number dependence is super-linear. Below this critical power the dissipation appears to be insufficient. For instance, it is not known if the critical dissipative QG equation has global smooth ...
متن کاملDecay of Fourier Modes of Solutions to the Dissipative Surface Quasi-geostrophic Equations on a Finite Domain
We consider the two dimensional dissipative surface quasi-geostrophic equation on the unit square with mixed boundary conditions. Under some suitable assumptions on the initial stream function, we obtain existence and uniqueness of solutions in the form of a fast converging trigonometric series. We prove that the Fourier coefficients of solutions have a non-uniform decay: in one direction the d...
متن کاملGlobal Well-posedness and a Decay Estimate for the Critical Dissipative Quasi-geostrophic Equation in the Whole Space
We study the critical dissipative quasi-geostrophic equations in R with arbitrary H initial data. After showing certain decay estimate, a global well-posedness result is proved by adapting the method in [11] with a suitable modification. A decay in time estimate for higher order homogeneous Sobolev norms of solutions is also discussed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010